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In internal friction measurements, relaxational effects are very often analysed in terms of 
the classical Debye equations, which are derived for processes with low relaxation 
strength. In a theoretical study it is shown that, in the case of high relaxation strength 
processes, deviations from the features of the Debye plots for damping and modulus 
defect occur. Calculations have been performed as well for the experimental situation of 
constant frequency as for resonance measurements. Whereas for the former only a shift 
of the modulus defect with respect to the peak maximum occurs, for the latter an even 
larger shift of the peak maximum and a narrowing of the peak plotted as a function of 
relaxation time is observed. Moreover, the influence of a temperature-dependent 
relaxation strength is studied and seen to yield an asymmetric damping peak when 
plotted as a function of temperature. Finally, the theoretical results, compared with some 
experimental observations, are shown to be able to qualitatively explain observed 
deviations from simple Debye type behaviour. 

1. Introduction 
Mechanical damping measurements have proved to 
be able to yield valuable information about the 
structural properties of both crystalline and 
amorphous materials. This is so because a large 
number of energy dissipating mechanisms can be 
formally described as arising from the stress- 
induced relaxation of an internal order parameter. 
Assuming that the rate of  approach to equilibrium 
of this order parameter is proportional to its 
deviation from its equilibrium value, Zener [ 1] has 
shown that the behaviour of such a solid can be 
described in terms of a fairly simple mechanical 
model consisting of two Hookean springs and one 
Newtonian dashpot. This model has been called a 
standard linear solid by Zener, a standard anelastic 
solid by Nowick and Berry [2]. It is clear that the 
constitutive equation for such a solid can be 
written as a linear combination of stress, strain and 
their first time derivatives. The solid is then fully 
characterized by three material constants. One of 
these parameters is related to the elastic properties 
of the material, the other two describe its relax- 

ational properties. These parameters can be deter- 
mined experimentally by measuring the strength 
and the rate of the relaxation effect, either in a 
static experiment (creep, elastic after-effect, stress 
relaxation) or in a dynamic one (attenuation, 
internal friction). Depending upon the kind of 
experiment used for determining the internal 
friction, several measures of the damping have 
been adopted in the literature. In a free decay 
experiment, the logarithmic decrement, fi, is the 
logical choice. For a forced vibration experiment, 
on the other hand, one may use either the width 
of the resonance peak in terms of the quality 
factor, i.e. Q- l ,  the specific amount of energy 
dissipated each half cycle, /',W/2W (vibration ab- 
sorption engineers use more frequently the specific 
damping capacity, Alg/If), or the phase angle, ~, 
between stress and strain. Since the relaxation 
strength is usually relatively small (often less than 
1%), one may use the simple conversion factors 
between these quantities given in most textbooks: 

Al~/2W = 8 = 7rQ -1 = r~tan~. 
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However, as pointed out by Zener [3] about 30 
years ago, this is no longer true when the relax- 
ation strength becomes larger than say 10%. T h e  
relationships between the relaxation strength and 
the various measures used for the specimen 
damping can still be derived rigorously and so, in 
principle, the material parameters can still be 
determined experimentally. But obviously the 
precision with which a large 6 or resonance peak 
width can be measured cannot be very high and, 
even more important, when these damping experi- 
ments are performed by a resonance-type method, 
a very large modulus defect is found to occur in 
the region of large damping. Since the natural 
variable to be used in describing a relaxation 
effect in a dynamic experiment is cot, the product 
of angular frequency and relaxation time, this will 
clearly induce a change in peak shape with respect 
to the small damping case. 

Consequently, if one wants to investigate a 
large relaxation strength process by means of a 
resonance experiment, one will have to use the 
complete analysis of the behaviour of the standard 
linear solid, in which the modulus variation due to 
the relaxation process is fully taken into account. 
This is actually a blessing in disguise, as this will 
allow one to determine the material parameters 
from the shape of the modulus versus relaxation 
time curve instead of from the peak height. In 
fact, it was precisely the observation of a relative 
displacement along the relaxation time axis of a 
damping peak in PVF2 and the corresponding 
modulus defect which induced us to consider in 
detail the behaviour of a standard linear solid 
under conditions of large relaxation strength. 

In order to make the paper as self-contained as 
possible, we will first briefly recall the results for 
the small damping case, leading to the well-known 
Debye relaxation equations. Next, we will drop 
the restriction of a small relaxation strength. We 
then consider successively experiments at constant 
frequency and resonance-type experiments, either 
in free decay or under conditions of sustained 
oscillation. In order to provide a molecular basis 
for the phenomenological mechanical model de- 
scription, a very simple two-position model is then 
introduced. This shows qualitatively how large 
relaxation strengths may arise physically and how 
the peak shape versus temperature (which is of 
course the usual way of collecting experimental 
results) is influenced by the magnitude of the 

relaxation strength. Finally, a comparison is made 
with a few experimental observations. 

2. Classical Debye relations 
The constitutive equation for Zener's standard 
linear solid is written most usefully in the follow- 
ing form: 

T + rs ~P = M R  S + M R  r T S  (1) 

where Tis the stress, S the strain, rs the relaxation 
time for the stress at constant strain, rT the 
relaxation time for the strain at constant stress, 
and MR the relaxed elastic modulus. It is then easy 
to show [4] that the unrelaxed modulus Mu is 
given by 

TT 
M v = M R - - .  (2) 

rs 

Although stress and strain should, in principle, 
be used in their tensorial form, it suffices for our 
purpose to restrict them to their scalar uniaxial 
expressions, so that also Mu and MR become 
scalar quantities. 

The definitions given for rs and rT are evident 
from a consideration of the solutions of Equation 
1 for constant strain So, and constant stress To, 
respectively: 

T = M R S o  + (To - - M R S o ) e  - v r s  (3) 

S = M R  a To + (So -- ~ 1  To) e- t/TT. (4) 

It is also clear that stress relaxation (at constant 
So) and creep (at constant To) will occur in a 
standard linear solid only when the relaxed elastic 
modulus is different from the unrelaxed one. 
Indeed, when M u = M R, To = M u S o  = Mi tSo  

and Equations 3 and 4 reduce to T = M R S o  = To. 

The occurrence of time-dependent effects implies 
therefore that rs < r T (the relaxed modulus is 
necessarily smaller than the unrelaxed one). 

If instead of a static experiment as described by 
Equations 3 or 4 one performs a dynamic experi- 
ment in which stress and strain vary harmonically 
with time, anelasticity will manifest itself by a 
phase difference between stress and strain and 
hence by a dissipation of mechanical energy. 

Making use of the Boltzmann superposition 
principle, we can restrict the discussion to the first 
term of a Fourier series of a periodically varying 
stress and strain: 

T = To e iwt (5a) 
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S = S O e icot (5b) 

The phase-lag between stress and strain is taken 
account of by the complex quantity So. Hence, a 
complex modulus: 

~I _ To _ M ~  1 + icorr (6) 
So 1 + icors 

can be defined and expressed in terms of the 
parameters of Equation 1 by substitution of 
Equation 5 into Equation 1. 

This complex modulus consists of a real part, 
which is called the dynamic modulus M and an 
imaginary part which is a measure for the damping 
r [4]. Hence: 

~/I = M + iMr (7) 

Equating Equations 6 and 7 for the complex 
modulus and assuming for the time being r s / r  T ,~ 

1, one can introduce geometric averages: 

r = ( r s r T )  in  (8a) 

114o = ( M u M n  ) i n  (8b) 

and obtain expressions known as the classical 
Debye relations [4] : 

Mu -- MR cot 
r - a o  1 + ((Jr) 2 (9) 

Mu -- MR 
M = M U 1 + (cot) 2" (10) 

Plotted as a function of ln(COr) a maximum for r 
and a maximum for the variation of M occur at 
(.o7 " =  1.  

3. Debye relations for arbitrary relaxation 
strength 

The effect of a large relaxation strength on the 
relation between the various damping measures in 
a resonance type experiment has been studied by 
Zener '[3] through a combination of the equation 

of motion of a vibrating solid with the constitutive 
equation for a standard linear solid. Whereas Zener 
gave only the results for the peak damping values, 
Parke [5] also considered the resulting changes in 
peak shape. Neither of these authors, however, has 
considered in detail the behaviour of the modulus 
defect and the information to be derived from the 
modulus versus relaxation time relationship. As a 
matter of fact, the usefulness of modulus measure- 
ments in the case of a large relaxation strength 

standard linear solid can be demonstrated most 
easily for constant frequency experiments. These 
will therefore be discussed first. 

3.1. Measurements  at  cons tan t  f r equency  
As already stated, the classical Debye relations are 
deduced by assuming rs ~ fT .  In cases of a large 
relaxation strength, however, this approximation 
is no longer valid and the expressions for damping 
and modulus defect become (cf. e.g. [7]): 

Mu -- MR (Jr 
- Mo 1 + (cor) 2 (9) 

Mu -- MR 
M = i U 1 + (Zs/rT)(CO7) 2" (11) 

One notices that the expression for the damping 
remains the same as for small relaxation strength. 
Hence, the maximum of the damping peak still 
occurs for COT = 1. In order to investigate the shift 
of the modulus defect with respect to the damping 
peak, one introduces a new parameter: 

M(COr >> 1 ) - -  M(COr = 1) 
r~ = M(cor = 1 ) - -M(cor~  1)" (12) 

Using Equation 11, this gives immediately: 

TT 
= - -  ( 1 3 )  

rs 

From Equation 11, the inflection point for the 
modulus as a function of In(cots), occurs at COts 
= 1. Since rs < r, this inflection point lies at the 
high r-value side of the damping peak (or at the 
lo~v temperature side for a relaxation process 
which is thermally activated). 

This result then allows one to determine the 
values of the two relaxation times rs and r r  from 
the experimentally determined modulus values. 
The ratio rT/Zs can be obtained from the ratio 
M o / M n  of the modulus values on either side of 
the relaxation peak. The value of rs can be 
obtained from the position of the inflection point 
or, alternatively, the value of rSrT can be obtained 
from the damping peak position occurring at the 
point where the ratio of the two modulus defect 
fractions 77 is equal to r T / r  s .  

Instead of using a constant frequency, one may 
profitably use resonance experiments in which the 
modulus is related directly to the observed 
resonance frequency of the solid. This is discussed 
in the next section. 
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3.2. Resonance measurements 
When a resonance method is used for measuring 
damping and modulus, the specimen is allowed 
to oscillate in one of  its mechanical resonance 
modes. The resonance frequency is then deter- 
mined by the geometry of  the specimen, the kind 
of  vibration mode and the elastic and anelastic 
properties of  the material (modulus and damping). 

This means that the co, appearing in the Debye 
relations, is itself a function of  the damping and 
the modulus. Provided the relaxation strength is 
rather low, co can be considered approximately as 
a constant. However, when a large modulus defect 
occurs (as a function of  r or of  temperature), the 
resonance frequency changes considerably. In the 
derivation of  the Debye relations we now have to 
take account of  the dependence of  co on modulus 
and damping, and therefore we have to introduce 
the equation of  motion of  the system under con- 
sideration. 

In the following we consider two possible 
experimental methods: the free decay and the 
forced resonance. The equation of  motion for 
these two cases can be written, assuming that no 
anharmonic effects occur, i.e. that the oscillation 
is amplitude independent, as: 

mS + illS = 0 for free decay (14) 

= Po el~ for forced resonance (15) 

where 214 is a complex modulus, describing the 
elastic and anelastic properties, m is a measure of  
inertia and Poe  i~ is an external driving force. 

3 .2 .  1. I m p l i c i t  e x p r e s s i o n s  
3.2.1.1. Free decay. A solution of  the equation of  
motion (Equation 14) is: 

S = So eit~ (16) 

where co* is a complex frequency given by:  

6o *2 = - - .  (17) 
m 

An expression for the stress is then given by:  

T = To eit~ (18) 

where To/So is complex in order to take account 
of  the phase-lag between stress and strain due to 
anelastic effects. Substituting these expressions for 
S and T into the standard linear solid equation of  
Zener (Equation 1), one obtains an expression for 
the complex modulus 114 as a function o f  the 
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resonance frequency, the relaxed modulus and the 
relaxation times: 

~I  = M R 1 + ico*TT (19) 
1 + ico*rs " 

Assuming that the specimen is homogeneous and 
that its behaviour is strain amplitude independent, 
one can equate both expressions (Equations 17 
and 19) for the complex modulus. Hence: 

1 + ico*rT 
MR -- moo .2 . (20) 

1 + ico*rs 

2o3 2 

and: 

Putting co*=  co[1 + i (6 /2~)] ,  where 6 is the 
logarithmic decrement [4], one can separate the 
real and imaginary parts in Equation 20: 

MR CO(rT -- ~-S) 
2~ -- m [1 - - co t s (6 /2 . ) ]  2 +co2r~(21)  

MR 
m 

(22) 

- c o o r s  1 -  co ~ r + co2 rs rT 

1 - - c o t  s +co2zg  

Rewritten in terms of  new variables: 

6 
y = - - ,  (23) 

27r 

x = cor = arv / ( r s rT )  (24) 
and 

3' 2 = __rT, (25) 
ZS 

Equations 21 and 22 can be combined to yield 
implicit expressions for 6/27r and for 6o 2 : 

2y _ (26) 
1 - y  2 ( + 1 \ +  2 2 

l + x 2 - y x  .3` 3`) y x 

 x,l+x, 
rn 1 - - ~ x y  + (1/3`2)x 2 

(27) 



One notices that for small values o f y  Equation 2 6  
reduces to the classical Debye relation (Equation 
9), namely: 

x [7 -- (1/7)] 
2y - 1 + x 2 (28) 

In this case, the peak maximum 

y '  = 0 appears for x = 1 (29) 

and the associated peak height is given by: 

7 -- (1/7)  
Ymax - (30) 

4 

Let us now consider the corrections appearing in 
the case of  high damping. Equation 26 can be 
written as: 

The condition for the peak maximum y '  = 0, can 
then be written as: 

OF 
- -  = 0 (32)  
3x 

Hence : 

4xy a -  + y + 4 x y - -  -- = 0. (33) 

Equations 31 and 33 form a set of  two equations, 
which can be written as: 

- - 2 x 2 y  3 + ( 7 + ~ ) x y 2  = - -a  (34) 

= - - b  

(35) 

where a and b depend on x and on higher powers 
of y and hence are correction terms. Furthermore 
the x and y values satisfying Equations 34 and 35 
correspond to the peak maximum and can be 
represented as xr~ and YM. One calculates easily : 

= [ 7 - ( 1 / 7 ) - - _ b  ( a 121 '/2 

[ 7 - ( I / 7 )  + b + 7 -  0/7)  + b- I ] 
a 

+ (36) 
v - ( l k )  + b 

7 - O k ) - b  
YM - (37) 

4XM 

Since the parameter 7, which was introduced by 
means of  Equation 12, is a good measure for the 
relaxation strength in the case of  high damping in 
non-resonance cases (Section 3.1), we must also 
derive an expression for it in the case o f  resonance 
measurements. In this last case the frequency is 
used as a measure for the modulus [4].  Therefore, 
the expression for ~ will now be based on the fact 
that the modulus is proportional to the square of  
the frequency: 

2 2 
COx._+~ --- (.Ox M 

7- 2 2 
(Dx M --  COx__~O 

72 ( 1  - -Txy)[1- - (1 /7)xy]+ x 2 1 

[1 - - (1 /7)xy]  a + 0172)x 2 1 _y2 
= ( 3 8 )  

( 1 - T x y ) [ 1 - O k ) x y l + x  2 1 
1 

[1 - ( 1 / 7 ) x y ]  2 + (1/72)x 2 1 - 2 2  

where x = XM and y =YM. For small relaxation 
strength (YM ~ 1, Xlvl = 1): 

r / = 9  ,2 

which corresponds with Equation 13. 
In Fig. 1 we have plotted the relative variation 

of  the parameters r/, xM and YM as a function of  
72 . Relative means here the ratio of  the correct 

1.4 ~ ) m ~  o 

Figure 1 Free decay: ratio of the exact ex- 121 ~ 
pressions for (6/2Zr)max, (~Or)max and n 
(Equations 37, 36, 38) to theextrapolated Q i ' , ~  " 
relations valid at small damping (Equations 1.11 r 2 
30, 29, 13) as a function of 3 ̀2 = rT/r s. : (,~,T I .... 

(.,z)), o The index 0 refers to the case a = b = 0 .  1. 2. 3. '~• 
).2 
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values of the parameters (Equations 38, 36, 37), 
against the values calculated from the expressions 
for low damping (Equations 13 and 25, 29, 30). 
The exact values of XM and YM are determined 
from Equations 36 and 37 by means of an 
iteration method, in which initial values for XM 
and YM are obtained for a = b = 0 and Equations 
34 and 35 are used for determining new values for 
a and b. 

From Fig. 1 one derives the magnitude of the 
relative error made by using the classical 
Debye relations in the case of high damping free 
decay measurements. In Fig. 2 the absolute values 
of YM and r/are plotted as a function of 3 ,2. This 
figure gives the possibility of determining graphi- 
cally the value of ":TIts = 72 from experimental 
values of peak height or 7. Since the value of 
[x/(co 2 rSTT)]M associated with the thus obtained 
3, 2 can be found in Fig. 1, ~'T and ~'s can again be 
calculated separately. 

3.2.1.2. Forced resonance. A solution for the 
equation of motion (Equation 15) can be written 
a s :  

S = Soe i(t~ (39) 

where co is a real frequency and ~0 denotes the 
phase-lag which appears between driving force and 
strain. For the stress one has: 

T = To ei(wt-~) (40) 

where To/So is complex and can be written in 
terms of the Zener relation: 

To = kI = M R 1 + icoTT. (41) 
So 1 + icons 

The damping is measured by means of the ratio 
in which AW=f2~TdS  is the AWIW, energy 
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Figure 2 Free decay: the  solid lines give exac t  
values of  (6/27r)ma x and  r/, t he  b roken  lines 

[ give ex t r apo l a t ed  low d a m p i n g  values. 

dissipated during one stress cycle and W= 
fon  TdS-- AW/4 is the maximum potential 
energy [2]. Hence: 

1 AW M U - -M~ COT 
i 

rr 2W Mo 1 + co2~ -2" 
(42) 

One notices that this expression does not differ 
from the classical Debye relation. The peak 
maximum always occurs at w~-= 1 and the peak 
height is equal to 

Alm'/2rrW = (~, - lh ' ) /4  (43) 

just as derived from the classical Debye relations. 
In order to calculate the resonance frequency, 

one derives an expression for the strain amplitude 
by substitution of Equations 39 and 41 in the 
equation of motion (Equation 15): 

_ m w2 S o  +MR 1 + T So = Po ei~ (44) 
1 + icors 

Hence: 
IS o 12 = 

Po2(1 + (.o2r}) 2 

[MRcO(rT_r8)] 2 + [MR( 1 + co 2 r g r T ) _ m t o : ( 1  + w 2r~)] 2" 

(45) 

Expressing the condition for resonance gives: 

co2 ~ {co4 MR 

\ 

2m 2 2m 2] 

1 ( ,M._co2Mo)= 0. 
m 

(46) 
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Figure 3 Forced resonance: ratio of  the exact 
expression for r7 (Equation 49) to the extra- 
polated relation vafid at small damping (Equa- 
tion 13) as a function of  3`2 = rT/rs .  

1.1}L 
1. 2. 

)2  

One notices that for w r  >> 1 

00 2 _ Mu 
m 

and for cor ~ 1 

o0 2 _ MR 
m 

(47a) 

(47b) 

For 72 one can then write" 

(1 + 3"/2) + x/{5 + 63 ̀2 + 53` 4 "~ 2[(1/3` 2) --3'61 } 
,,/2 __ 

2[(1/3, 2) + v 2 + 2] 

( t  + 37 ~) + x/{5 + 63` 2 + 53, 4 + 2I(1/72) --3`61 } 
1 

2[(1/3`2) + 3`2 + 21 

(49) 

In order to obtain an expression for 

2 2 
COx--> ~ - -  C O X =  1 

72 = 2 2 
( " O x =  1 - -  L O x - + O  

with 
X ~ f.OT (24) 

one first calculates co2(x = 1): 

6o2 MR 
x = l  ~ - -  X 

/7/ 

(1 + 33, 2 ) + X/{5 + 63, 2 + 53, 4 + 2 [(1/3,2) _ 3,6 ] } 
2[(1/3,2) + 3,2 + 2] 

(48) 

In Figs. 3 and 4 we plot the relative and 
absolute variation of  the parameter 72 as a function 
of 3`2. One notices that the deviation of  72 from the 
extrapolated low damping value 3, 2 is much larger 
in the case of  forced resonance than for free decay 
(cf. Figs. 2 and 4). The relaxation times r s and rT, 
can again be calculated from Fig. 4 and from the 
relation x/(rsrT, ) = 1/co, which is valid at the peak 
maximum. 

3.2.2. Explicit expressions 
In addition to the relationships concerning the 
peak maximum, one may also consider the effect 
of  large relaxation strength on the entire peak 
shape�9 

Figure 4 Forced resonance: the solid line gives 
exact value o f  r~, the broken line gives extra- 
polated low damping value. 
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Figure  5 Free decay: normalized damping,  

~/8rnax, and normalized change in fre- 

quency,  (COz~ ~ - -  c o z ) / ( t o z ~  ~ - -  ~ r - ~ o ) ,  
as a funct ion of average relaxation t ime 

for a relaxat ion strength of M R / M  o = 

0.999 giving a 6ma x -- 1.57 X 10 ~ (broken 

line) and M R / M  U = 0.5 giving a 6ma x = 
1.32 (solid line). The resonance frequency 

for high z-values has been chosen arbi- 

trarily equal to 5 Hz for both  cases. 

3.2.2.1. Free decay. Instead of deriving the 
implicit Equations 26 and 27, one derives from 
Equation 20 a set of two equations in the two 
unknowns 6 and w as functions of r. Taking 
Equations 23, 24, 25, 2 and 8a into account one 
gets: 

3co2y 2 --2--w'I,y +M-----u--co 2 = 0 (50) 
r m 

co 2 Mu 
co3(y3 _ 3y) + - - ~ '  (1 _ y 2 )  + _ _  coy 

r m 

Mu1 1 
- 0. (51) 

m r ' y  

In Fig. 5 a numerical example has been plotted 
for two different orders of magnitude of the 
relaxation strength (rs/rr = MR/Mu = 0.999 and 
0.5) and for a given value of the unrelaxed modulus 
(Mu/m = 25 Hz 2). 

The unknowns 6 and co have been calculated 
as a function of the parameter r by solving the 
set of two equations with the help of a computer- 
programmed iteration method. Since the proper- 
ties of the peak maximum have been discussed 
in the previous section in terms of the implicit 
relations, we will here only consider character- 

istics of the entire peak shape and the modulus 
defect. As one notices from Fig. 5 the half-width 
of the damping peak plotted as a function of 
In 7, is smaller for the high damping case. One 
also notices a shift in the modulus defect to 
higher r-values. This will be discussed in more 
detail in Section 3.2.2.2. 

3.2.2.2. Forced resonance. An explicit expression 
for the damping and frequency is already given 
by Equations 42 and 46. In Fig. 6 a numerical 
example has been plotted for two different orders 
of magnitude of the relaxation strength (MR/Mu 
= "Cs/r 7, = 0.999 and 0.5) and for a given value of 
the unrelaxed modulus (Mu/rn=25Hz2) .  The 
calculations are done with the help of a computer 
program. One notices that again the high damping 
peak has the smallest half-width. 

Another interesting property, which can be 
visualized in Fig. 6, is the shift of the modulus 
defect with respect to the peak maximum. We know 
that for low damping the symmetry point of the 
modulus defect lies near the peak maximum 
position. In terms of the parameter r/introduced 
in Equation 12 as the ratio of the parts into which 
the modulus defect is divided by the peak position 

Figure  6 Forced resonance: as Fig. 5 with 
( A W / 2 W ) m a  x = 1.57 10 -3 and ( A W /  

2W)ma x = 1.11 respectively. 
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Figure 7 Damping and normalized change in 
frequency for a relaxation process with a 
relaxation strength MR/M U = 0.5 measured 
in free decay (1) and forced resonance (2). 
The resonance frequency for high r-values 
has been chosen equal to 5 Hz. 

this means that  for low damping r~ ~ 1. For larger 
values of  the damping this value of  ~ increases, 
which means that the modulus defect shifts to 
the high r value side (or low temperature side). 
One may notice that this shift also occurs in the 
case of  non-resonance measurements (see Section 
3.1). However, this shift effect is very pronounced 

in the case of  forced resonance since the value of  
r/ increases much more rapidly than 3 ̀2 = ~-~'/~-s, 
which is proport ional  to the relaxation strength. 
This important  shift of  the modulus defect can 
also be noticed in Fig. 7 where we plot ted for 
comparison the modulus defect and damping for 
the same relaxation strength in free decay and 
forced resonance. This plot also shows that  ~max 
and (AW/2W)max have a different value in case 
of  high damping. This can also be deduced from 
Equations 43 and 37 and Fig. 2. 

4. Relaxation due to stress-induced 
thermally activated internal ordering 

The constitutive equation for the standard linear 
solid can be derived in a phenomenological way 

by introducing a parameter describing the state 
of  internal order of  the solid and by making a 
number of  assumptions about the stress depen- 
dence ofo this parameter and about its rate of  

approach to its equilibrium value [3].  The Zener 
standard linear solid can also be given an atomistic 
foundation by considering the thermodynamics 
of  a specific molecular species incorporated in 
the solid and causing a change in free energy of  
the solid when it is acted upon by an external 
field (e.g. [2, 4]) .  Anelasticity then results if this 
molecular species can occupy in the solid a number 
of  equivalent positions which can be made non- 
equivalent in the presence of  an external field and 
if these equilibrium positions are separated by 

energy barriers so that the at tainment of  equi- 
librium is delayed. In the simplest atomistic model 
for a Zener solid, one considers a species which 
can occupy one of  two equilibrium positions 
characterized by a Gibbs free energy level 3'o in 
the absence of  external stress, 3`1 or 72 when a 
stress T is applied to the solid. The free energy 
of  the solid when the species is at the saddle point 
between the two equilibrium positions is Ho 
when T =  0 andH~ when T=/= 0. 

The stress-induced change in the free energy 
level is determined by the change in strain Sr,  
generated by  reorientation of  the molecular species: 

(i = 1 or 2, Ni is the population of  position i, N 
= N~ + N2 is the total population and V is the 
molecular volume). Restricting oneself to the 
linear approximation,  one may then write: 

Ti = 7 0 - - V X i T  (i = 1 or 2) (53) 

H1 = Ho + c~T. (54) 

This is represented in the schematic free energy 
diagram of  Fig. 8. 

--H I 

- - H  o 

- 3 ' 1  

t o 

- -  ?? 

P O S I T I O N  1 P O S I T ~ O N  2 

Figure 8 Schematic free energy diagram for a simple two 
position model. 
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The transition probabilities w12 and w2a be- 
tween positions I and 2 can then be written as: 

[ W12 ~--" W21 = W 0 exp kO = w 

for T = 0 (55) 

HI - -  3`t] 
w12 = Wo exp kO 

and [-,-q 
W21 = W 0 exp -k-O J 

(56) 

for T=; a 0, (57) 

(k is Boltzmann's constant and 0 the absolute 
temperature). The rate equation for the popula- 
tion Ni is then: 

/V1 --- - -  N1 (w12 + w21) + NW21- (58)  

The constitutive equation follows from the expres- 
sion for the strain, S: 

T T 
S = M u  +Sin,1 +Sin,2 = M y  

which relates N1 to T and S. 
Hence: 

~ ' U  q'- V(~kl - -  ~K2)A/I (60) 

and: 

MuS+Mro(wx2 + W21)S = r q -  (w12 -[- w21 ) T 

+ Mu N V(X~ --  X2)(w2, --  wag) (61) 
Z 

in which w12 and w21 are still functions of  T. 
For sufficiently small stresses, aT '~kO and 

) , iT~  kO and one may linearize the stress depen- 
dence o f  the transition probabilities so that*: 

w T  
w21--w12 = V ( X l - - M ) ~ - -  (62) 

Hence: 

s +  g -  
WI2 q- W21 W12 q- W21 Mu 

+ T  
V2N 2 w ] 

1 + 2 (Xl--X2) ~ ; .  (63)  
W12 W21 

This is equivalent with the Zener equation: 

1 
S + r T S  = M d g ( V + r s ~  (64) 

when the parameters r r ,  rs and MR are inter- 
preted as follows: 

T = (wx2 + wzl) -1 

- 1 ( I + a T + X l + X 2 )  
2w k~ 2kO - VT (65) 

1 1 UN(Xl  - X2)Zw 

MR Mu 2kO (w12 + wzx) 

1 V2N(Xl -- X2) 2 + 
M U 4k0{1 -- (ar/kO) -- [(X~ + X2)/2kO] T} 

(66) 

MR 
rs - M u  rr;  (2) 

It thus appears that r T is in general a function of  
the stress level and becomes independent of  T 
only when oe = -- (Xl + X2)/2. Of course, as long as 
a T ~ k O  and X i T ~ k O ,  the error made in taking 
rT = 1/(2w) irrespective of  the stress level remains 
small and this is the point of  view usually adopted 
[2]. On the other hand, the ratio 3 ̀2 = rT/rS = 

M u / M  R is a function of  the temperature 0 as 
well as of  the parameters N and (Xl - -X2)  2 
which characterize the relaxing molecular species 
in the solid. Since the magnitude of  (Xl --X2) 
is usually only a fraction of  unity, it is clear that 
a large relaxation strength can only be expected 
for processes in which a large number of  molecules 
take part, i.e. in which VN becomes comparable 
with one. This brings us to amorphous materials 
or to materials in which phase transformations 
occur (although in this latter case the applicability 
of  the simple-minded Zener model becomes 
questionable). 

As pointed out before, the natural variable for 
the representation o f  a relaxation effect described 
by a standard linear solid model is cot, which 
reduces to r both for a constant frequency experi- 
ment and for a resonance type experiment for 
which co can be expressed in terms of  r. For 
thermally activated processes as discussed here, 
r is a function of  temperature and experimentally 

* For larger stresses, or for small temperatures, this approximation is no longer allowed and Equation 61 cannot be 
transformed into the standard linear solid shape. The damping peak shape now becomes amplitude-dependent. 
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one measures the temperature dependence of 
damping and modulus defect instead of  the relaxa- 
tion time dependence. As a matter of  fact, this 
can be done for any process for which r depends 
on temperature (e.g. tunnelling of point defects 
between equilibrium positions, glass transitions 
in amorphous polymers . . . .  ). Therefore, in order 
to evaluate a relaxation effect one often studies 
the peak shape in a curve of damping versus 
temperature. 

Since 3'2 is inversely proportional with tempera- 
ture, one might expect changes in peak shape for 
large relaxation strengths. In order to estimate 
this influence, let us consider M~ 1 to be a linear 
function of  0-1" 

M~. I = M~31 +C1 + C 2 0  -I 

(C1 and 6'2 are constants) (67) 
o r "  

3"2 _ r r  _ M u  _ 0 + 0 o  (68) 
r s Mrt A 0 

which covers the cases of  a temperature-indepen- 
dent relaxation strength (0o = 0) and of a relaxa- 
tion strength proportional with 0 -1 (A = 1; 
0o = CgMv). Introducing this temperature-depen- 
dent 3' into the constitutive equation for the st-an- 
dard linear solid and restricting oneself to a 
constant frequency experiment as in Section 3.1. 
yields the following expression for the damping: 

x("/z -- 1) 
q~ - 3'(1 + x2) " (69) 

Taking account of  the temperature dependence of 
x = cot = coro exp (q/O) as derived from Equations 

55 and 65, one finds that the maximum value 
~M of q~ occurs when: 

200o(1 + 3'z) 
X 2 = X~V I = 1 + 

2q(O +00)(3 '2 - -1 ) - -00o(1  + 3'2) 

- 1 + fi (70) 

and is given by: 

3 '2 - -1  x/(1 +/3) 
4~M = (71) 

7 2 + ~  

The peak shape can be characterized by the 
temperatures 01 and 02 for which q~ = �89 This 
occurs for x = xl,2 given by: 

Xl, 2 = (l +/3)-1/212 +/3-+(3 + 3fl +/32)1/2]. 

(72) 

In terms of 01, 02 and the peak temperature, 0M, 
this yields: 

( 1  1 )  - x l  - (73) 
e x p q  01 0M X M 

[2 +/31 + (3 + 3/3x +/3~)a/2 ] [(1 +/3M)(I +/31 )1 - 1 / 2  

1 1 ) XM _ (74) 
e x p q  0M 02 - x2 

[2 +/32 - - (3  + 3/32 +/322) '/2 ] -1 [(I +/3M)(1 +/32)] 1 / 2  

in which /31, /32 and /3 M are the values of/3 for 
temperatures 01, 02 and 0M, reSpectively. For 
reasonable values of  q, 7 and 0o, it appears that 
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Figure 9 Experimental internal friction results 
for PVF 2 measured with the forced resonance 
method [8]. 
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Figure 10 Experimental internal friction results 
for PVF 2 measured with the free decay method 
[6]. 
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one may assume 3 ~  1 and approximate the half 
peak widths in terms of temperature by the 
following expressions: 

0 M  - - 0 1  3 M  
q - 1.317---2- 

OlOM Z 
(75) 

02 -- 0M 3~ 
q - -  - 1 . 3 1 7 + - -  (76) 

020 M 2 

This means that the total peak width remains 
independent of the relaxation strength, as was 
already found in Section 3.1, where the damping 
was expressed in terms of coT. However, when the 
peak is plotted as a function of 0-1 instead of as 
a function of In (coT), it becomes asymmetrical 
with respect to the peak maximum. 

For a resonance type experiment, the peak, 
when plotted as a function of In (cot), becomes 
narrower with increasing % and one might expect 
that this change in peak shape adds to the asym- 
metry derived here for the temperature depen- 
dence. 

5. Comparison with experimental results 
In Figs. 9 and 10 internal friction results (damping 
and resonance frequency) are plotted as a function 
of temperature for commercial PVF2 (poly- 
vinylidene fluoride), measured during forced 
(Fig. 9) and free (Fig. 10) resonance oscillation 
[6, 8] ). 

The measurements in forced oscillation are 
done by means of a transverse resonance method 
for frequencies of a few hundred Hz. The free 
decay measurements are performed in a torsion 
pendulum with frequencies of about 1 Hz. 
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A relaxation peak with high relaxation strength 
ts noticed in both cases. From the change in 
frequency one calculates: M R/M U = (540)2/(800) 2 
= 0.46 in the case of forced resonance and M R/  
Mu = (0.65)2/(1.09) 2 = 0.36 in the case of free 
decay with a damping maximum of respectively 
0.8 and 0.38. 

In both figures (9 and 10) one observes the 
shift of the modulus defect symmetry point to 
lower temperatures with respect to the position 
of the peak maximum. In terms of the inter- 
relation between relaxation time and temperature 
(see e.g. [7]) the theoretical results (Figs. 5 to 7) 
explain the experimental results (Figs. 9 and 10). 
Indeed, the observed temperature shifts are in 
the same sense as the calculated time shifts, since 
time is equivalent with inverse temperature. A 
quantitative comparison is difficult to make, 
since this would require a precise knowledge about 
the time-temperature interrelation existing in the 
material. 

Other experimental results, which show proper- 
ties predicted by our theoretical study are the 
high damping measurements on Cu-A1 alloys by 
Koiwa et al. [9]. A specific feature of the highest 
damping peaks (with 3 = 0.2) is their narrowness, 
compared with a single Debye relaxation peak. 
Koiwa et al. argued that this might be due to the 
fact that in the calculation of the theoretical 
curve, a constant value of the frequency of vibra- 
tion is used over the whole range of temperature. 
Therefore, they plot a corrected curve, taking 
account of the change of frequency, and find 
a peak about 4% narrower than the classical 
Debye peak, but nevertheless still much broader 



than their experimental results, for which the 

half-width is about 40% smaller than the un- 

corrected theoretical curve. The authors there- 

fore concIude that another reason must be found 

for the narrowness of the peak. However, the 

correction, performed by Koiwa et al. taking 
account of the changes in frequency, is only a 
partial correction since the calculation is, as we 
presume, still based on the classical Debye equa- 
tion (Equation 9). 

Using our theoretical equations (Equations 50 
and 51), we calculated another corrected curve 
with a relaxation strength deduced from the fall 
in the frequency. The half-width which follows 

from our corrected curve is still broader than the 
experimental results but, being 20% narrower 
than the Debye peak, lies nearer to them than the 

4% narrower peak of Koiwa et al. Again, we con- 
clude that our theoretical results can explain 
the experimental results in a qualitative way, 

whereas a quantitative comparison is difficult. 
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